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This paper reports on an experimental investigation to determine the structure and
mean flow quantities of round zero-net-mass-flux (ZNMF) jets. These jets are gen-
erated by a piston oscillating in a cavity behind a circular orifice. Several different
flow patterns were observed with dye flow visualization and a parameter map of
these was generated. Cross-correlation digital particle image velocimetry was used to
measure instantaneous two-dimensional in-plane velocity fields in a plane containing
the orifice axis. These velocity fields are used to investigate the existence of a self-
preserving velocity profile in the far field of the ZNMF jet. The mean flow quantities
and turbulent statistics of the ZNMF jets were compared with measurements for
‘equivalent’ continuous jets in the same apparatus. Phase-averaged velocity measure-
ments were obtained in the near field of the ZNMF jets and were used to determine
the radial entrainment. The out-of-plane vorticity fields were also investigated to gain
an understanding of the mechanisms responsible for the difference in spreading rate
of ZNMF jets compared to conventional continuous jets. A conceptual model of the
ZNMF jet structure in the near field for Strouhal numbers much less than one is
proposed that explains the observed behaviour of these ZNMF jets.

1. Introduction
In an overview of acoustic streaming Lighthill (1978) summarizes the two methods

for generating fluid streams. The first is the transmission of pressure waves through
a compressible medium. The second, which is the focus of the present study, is
the streaming motions that can be generated by viscous effects at a boundary. A
zero-net-mass-flux (ZNMF) jet is a fluid stream with non-zero mean streamwise
momentum formed by the interaction of vortices. The vortices are generated by the
periodic oscillation of a fluid boundary and propagate due to the nonlinear term
in the equations of motion. The vortices are created within the fluid in which the
generator is deployed without the net injection of additional fluid. This feature makes
ZNMF jets attractive for applications in fluid mixing where the cost, bulk and mixing
efficiency of the mechanism is a primary consideration.

The mixing properties of mechanically excited fluid streams has been previously
studied by examining the behaviour of pulsing jet flows. These jets consist of periodic
flow oscillations superimposed on a mean continuous stream. Pulsed jets are classified
by the velocity amplitude of the imposed forcing. When the RMS velocity is small
(< 10% of the mean velocity), the forcing is said to be ‘low amplitude’. Above this
threshold the forcing is considered to be ‘high amplitude’ up to the condition where
the amplitude of the excitations produces a maximum velocity at the jet centreline
with a magnitude equal to the mean velocity of the jet across the exit plane. This
flow is termed a ‘fully pulsed’ jet. A comparison of fully pulsed jets was performed
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in the experimental work of Bremhorst & Hollis (1990). The ZNMF jet (also called
a synthetic jet) is considered to be a special case of the fully pulsed jet flow, since
the mean velocity is zero and it is generated wholly by a pulsing action. However,
the fundamental difference in the fluid mechanics between a ZNMF jet and a fully
pulsed jet during formation is the period when the flow direction at the generator is
reversed.

The number of applications for ZNMF jets as flow actuators has increased
considerably since the discovery that they can be manufactured at micron scales
using micro-piezoelectric manufacturing technology. A ZNMF jet generated by a
round piezoelectric device was investigated in James, Jacobs & Glezer (1996). In
this study a jet was produced by a piezoelectric diaphragm mounted flush with
a wall and submerged in water. However, a ZNMF jet was only generated for
high amplitudes of oscillation when cavitation bubbles formed at the diaphragm
surface. The formation of the jet was therefore attributed to the motions caused
by the periodic formation and collapse of the bubbles. The spreading of the
resultant jet was less than that of a conventional jets at a similar source Reynolds
number, but mean profiles were found to be self-similar within the measurement
resolution of the apparatus. It was noted that an array of ZNMF jet flow actu-
ators mounted on a surface permits the dynamic changing of a flow boundary
condition.

In Smith & Glezer (1997) it was shown that jet formation can be enhanced under
most circumstances by using a cavity partially closed by an orifice and fitted with
an internal oscillator. It was also shown that the behaviour of shear flows can be
manipulated by pairs of ZNMF jets placed on either side of a jet. By oscillating the
ZNMF jets at frequencies an order of magnitude higher than the unstable frequencies
in a shear layer, a nonlinear amplification of disturbances was produced. These
disturbances can effect changes that are one or two orders of magnitude greater than
the dominant length scale of the flow. The vectoring of shear flows manipulated
in this way is accompanied by an increase in fine-scale motions in the flow, which
provides further opportunities for the application of ZNMF jets to the enhancement
of mixing in fluids.

The mean properties of plane (or rectangular) jets were investigated by Smith &
Glezer (1998) and compared to the properties of conventional two-dimensional jets.
At each oscillation of the actuator within the rectangular cavity, the flow separates
at the orifice edge and coalesces to form the mean jet flow. The jet flows were
generated at a fixed frequency for a source Reynolds number of 383, based on the
peak axial velocity at the orifice. The vortices produced were initially laminar at this
relatively low Reynolds number. The transition of the jet to turbulence was attributed
to the breakdown of the vortices due to a wavy spanwise instability. This appears
to be equivalent to the inviscid azimuthal instability in the breakup of vortex rings
as observed in Widnall & Tsai (1977). In that study, hot-wire probes were used to
investigate the evolution of the centreline velocity and the results showed a rate of
decay typical of a plane jet.

ZNMF jets were investigated numerically by Kral et al. (1997). They studied the
behaviour of two-dimensional laminar and turbulent ZNMF jets and compared them
to steady and fully pulsed jets. The flows were classified using the time-averaged
momentum flow of the jets over half the period. The flow within the generation
cavity was not computed; instead a simple harmonic oscillatory velocity boundary
condition was employed to model the flow at the orifice. A number of orifice velocity
distributions were investigated including the ‘top-hat’ profile. At low source Reynolds
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numbers the computed flow structure was identified from the vorticity fields to be a
series of laminar vortex pairs. The mean velocity profiles were only qualitatively in
agreement with the experimental results of Smith & Glezer (1997) in the near-field
region. However, the agreement became more satisfactory at large distances from
the orifice. No comparison of the fluctuating components of the velocity field was
presented.

Rizzetta, Visbal & Stanek (1999) extended the domain of ZNMF jet simula-
tions to three dimensions in an attempt to match more closely the physics of the
fluid mechanism responsible for the breakup of jets in the experiments of Smith
& Glezer (1997). However, resource limitations prevented the simulation of rec-
tangular jets with the same aspect ratio. This work also simulated the cavity flow
for two different cavity depths, in an attempt to explain the differences between
the experimental studies and the results of Kral et al. (1997). The driving bound-
ary was simulated by a sinusoidal inflow, but the resultant motion through the
orifice was found to be non-similar in time. This was attributed to the formation
of regions of vorticity within the cavity. Laminar simulations produced a series
of laminar rings without the formation of a continuous stream. The single turbu-
lent case modelled in that study showed poor agreement with experimental velocity
measurements.

Multiple micro-scale ZNMF jets have also been used to enhance the mixing
properties of continuous jets. For example, Davis & Glezer (1999) used a series of
ZNMF jet actuators placed in a concentric ring around a circular orifice to stimulate
fine-scale structures within the shear layer of a round jet. These actuators were
manipulated to excite the jet flow in two modes, axially or radially. By varying the
amplitude of oscillation, it was discovered that instabilities in the shear layer could
be suppressed or amplified. It was also shown that excitation of the jet results in
increased jet dispersion and increases the total entrainment.

In the present work a ZNMF jet that is axisymmetric in the mean is formed from
the interaction of vortex rings that separate at a round orifice. The flow through the
orifice is produced by the periodic oscillation of a piston within a cylindrical cavity.
A study was undertaken to identify the flow structure in the developing region of
the ZNMF jet that govern the dynamics of the flow. The in-plane velocity fields and
temporal velocity gradients were measured to determine the functional dependence of
the mean velocity profiles and second-order turbulence statistics on axial displacement
in the flow development region.

2. Flow parameterization

2.1. Characteristic scales and non-dimensionalization

The dimensionless groups that have been identified to characterize the ZNMF jet
flow field are the source Reynolds number and the Strouhal number. To non-
dimensionalize the flow field using these parameters it is necessary to determine
appropriate length, velocity and time scales for the flow. From the flow generation
apparatus an obvious choice for a length scale is D0, the orifice diameter. This scale
is used in both the source Reynolds number and the Strouhal number to classify the
global flow pattern and behaviour. The source Reynolds number is

Re0 =
U0D0

ν
, (2.1)
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where U0 is a characteristic velocity scale. The Strouhal number based upon the
frequency of oscillation f, and the same velocity and length scales is

St0 =
fD0

U0

. (2.2)

In previous work on continuous jets the mean velocity across the orifice or the peak
centreline velocity has often been chosen as the characteristic velocity scale. The
choice of a characteristic velocity scale is less obvious for a ZNMF jet since the
integrated mean exit velocity of the fluid through the orifice is zero. In the studies
of pulsed jets in cross-flow, the jets have been characterized by the mean velocity
(Chang & Vakili 1995; Hermanson, Wahba & Johari 1998; Johari, Pacheco-Tougas
& Hermanson 1999; Vermeulen, Chin & Yu 1990; Wu, Vakili & Yu 1988) or the
mean momentum of each pulse (Eroglu & Breidenthal 2001). Studies of ZNMF jets
use either a mean velocity over the injection half of the cycle (Smith & Glezer 1998),
or the maximum jet velocity (Kral et al. 1997), or a mean jet velocity at some distance
from the orifice (Mallinson, Hong & Reizes 1999; Rizzetta et al. 1999).

A more appropriate velocity scale at the jet source can be derived by examining
the flow at the orifice exit plane. If it is assumed that the flow generation mech-
anism (in this case the piston) has a constant mean position, then no net mass is
injected. However, there is a net momentum flow through the exit plane, and energy
is transferred to the environment. This suggests that a velocity scale based on mean
momentum flow should be considered. If the mean-squared integral of the velocity
profile over an oscillation period is calculated, a non-zero quantity results. Divid-
ing the resulting mean momentum flow by the orifice area followed by taking the
square root results in a quantity which has the units of velocity (or average specific
momentum). This characteristic velocity is termed the momentum flow velocity and is
given by

U0 =

[
4

πD2
0T0

∫ T0

0

∫ D0/2

0

2πru(r, t)u(r, t) dr dt

]1/2

. (2.3)

The streamwise coordinate is x and the radial coordinate is r, both of which are
measured from the orifice centreline. The azimuthal direction is perpendicular to
both x and r and is denoted by θ. The oscillation period is T0. For the continu-
ous jet the same analysis results in the mean mass flow velocity across the orifice.
ZNMF and continuous jets are matched throughout the present work by equat-
ing the momentum flow velocity. For a sinusoidal excitation the ZNMF jet has a
peak exit velocity at the orifice that is

√
2 larger than the mean velocity of the

equivalent continuous jet, assuming that the orifice velocity profiles have the same
shape.

The Reynolds number of the ZNMF jet can be systematically manipulated by
changing the frequency of oscillation and thus changing the momentum flow velocity
at the orifice. The other parameter that can be varied is the amplitude of the
oscillation. In this study the relative amplitude of the oscillations is large compared
to the orifice size such that the length of the ejected slug of fluid non-dimensionalized
by the orifice diameter is approximately 30. Increasing the amplitude of the excitations
has the effect of increasing the Reynolds number and decreasing the Strouhal number.
Thus, if the streamwise profile of the flow through the orifice is solely a function of
Reynolds number, the Strouhal number is essentially the inverse of a non-dimensional
oscillation amplitude.
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2.2. Self-preservation of the jet flow

The possibility of self-preserving solutions to the governing equations of axisymmetric
jets has long been recognized, as noted in Tennekes & Lumley (1972). Usually,
solutions to the steady axisymmetric equations are sought in terms of a similarity
variable which is the radial coordinate non-dimensionalized by the axial location,
η = r/(x− x0). A velocity virtual origin (x0) is also included to simulate a point
source of momentum for the jet.

Dimensional analysis of the far field using the principle of conservation of momen-
tum leads us to expect a linear growth of the jet at a rate that depends on the source
Reynolds number and a decrease of the centreline velocity with x−1 such that for a
self-preserving jet the relationship for the centreline velocity becomes

U0

Uc

= Su

(
x− x0

D0

)
. (2.4)

Su is a constant that depends on the experimental facility and is known as the ‘decay
constant’. This expression can be re-written in terms of the jet momentum Mj:

Uc = B

(
M

1/2
j

x− x0

)
, (2.5)

where B = 2/(
√
πSu). Often, a second virtual origin xs is included in the analysis of

the jet spread, so that the growth of the jet half-width r1/2, is given by r1/2 = Sb(x−xs).
Sb is known as the ‘spreading rate’. For a top-hat profile, an analytical model of a
jet in an infinite environment gives the values for these constants as Su = 0.1695 and
Sb = 0.1. Although these scaling relationships have been found to be non-universal
by George (1989), this approach is useful for comparison with other published data.
The actual structure of the jet flow is discussed in § 6.1.

3. Experimental technique
3.1. Flow geometry

The experimental measurements of the ZNMF and continuous jets were carried out
in an acrylic tank 1000 mm long, 500 mm wide and 500 mm deep, filled with filtered
water. To remove the air/water interface within the facility, the tank has a riser tube
with an inner diameter of 56.5 mm located on the Perspex roof at the far end of the
tank from the piston normal to the jet axis, and the facility was filled with water to
the Perspex roof. The riser tube removes the net mass injected during the continuous
jet experiments.

In each experiment jets were formed by discharging water from a circular cylinder
of inner diameter Dp = 50 mm through an orifice plate of diameter D0 = 2 mm,
positioned in the centre of the endwall of the tank using a piston in the cylindrical
cavity. The dimensionless groups that characterize the geometry of the apparatus are:
a contraction ratio, a dimensionless cavity depth and a slug length. These are given
by AR = D2

p/D
2
0, C0 = C/Dp and LD = LpAR/D0, respectively, where C is the mean

depth of the cavity and Lp is the stroke length of the piston.
The contraction ratio of the apparatus between the cavity and the orifice was held

constant at AR = 625. The thickness of the orifice plate is the same as the diameter of
the opening, so that the generator matches the geometry simulated in Rizzetta et al.
(1999). The detailed geometric arrangement is shown in figure 1. Two different orifice
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Figure 1. Schematic of jet generation apparatus. The internal dimensions of the tank are
500 × 500 × 1000 mm. The tank is filled with water, at a temperature of 19 ◦C, initially at rest.
Orifice plates are attached to the end of the piston cylinder and mounted with the external surface
flush with a false wall inside the tank.

plates were used in this work, each was manufactured with a thickness of 2 mm,
but with different inner edge geometries. For the flow visualization experiments, a
blunt-edged orifice was chosen. This was later abandoned for the particle image
velocimetry (PIV) velocity measurements due to concerns about the effect of flow
separation from the inner edge of the orifice during the forward stroke as seen in the
computed results of Rizzetta et al. (1999). To preserve flow symmetry at the orifice
during the forward and reverse strokes, the blunt-edged orifice plate was replaced
for the remaining measurements with a orifice plate bevelled at 45◦ on both faces.
Comparative flow visualization conducted using both orifice plates did not reveal any
differences in the behaviour of the jets.

Continuous jets were generated by a long, constant-velocity stroke of the piston.
At the end of each experiment the finishing position of the piston was 50D0 from the
orifice, inside the cavity. The orifice plate obscured the optical path at the generator
so that the flow behind the orifice could not be measured or easily visualized in this
facility.

The generating mechanism for the ZNMF jets consisted of the same piston/cylinder
arrangement used to generate the continuous jet with the stepper motor programmed
to oscillate with a time-periodic function that approximates a sine curve. The mean
position of the piston during the generation of ZNMF jet flows was maintained
at 50D0 from the external face of the orifice plate within the cavity, which gives a
constant non-dimensional cavity depth of C0 = 1.0.

The dimensions of the experimental facility are a concern, particularly for the
continuous jets because the bounded nature of the facility necessitates a reversed flow
outside the jets. The loss of momentum of the jets due to the reverse flow can be
estimated following the technique outlined by Hussein, Capp & George (1994). If it
is assumed that the return flow around the jet UR is constant, that mass is conserved
and the viscous effects at the walls are neglected, the equation for the momentum
flow in a streamwise plane is

M =

∫
jet

u2 dA+

∫
reverse

U2
R dA. (3.1)

If we further assume that the area covered by the jet flow is small and we set AR to
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Figure 2. The continuous curve is the quasi-sinusoidal input signal to the stepper motor and
the symbols denote the actual displacement of the piston measured using the LVDT. Dashed
vertical lines show the phase positions used for phase-averaging the vorticity data. (a) Re0 = 103,
St0 = 0.072; (b) Re0 = 104, St0 = 0.0015.

be the cross-sectional area of the tank, it can be deduced to first-order that

M =

∫
jet

u2 dA+U2
RAR. (3.2)

Finally, if the jet profile is approximately Gaussian and scales with η such that
u(x, η) = (BM1/2/x) exp[−Cη2/η2

1/2], the return velocity is

UR =
2

B
M1/2x. (3.3)

Substitution of this into the original balance gives a ratio between the jet momentum
M and the source momentum of the form

M

M0

=

[
1 +

16

πB2

(
x

D0

)2
A0

AR

]−1

. (3.4)

where A0 is the cross-sectional area of the orifice. This analysis also neglects the effect
of the riser tube at the end of the tank.

Positional feedback was obtained from a linear voltage displacement transducer
(LVDT) which was directly mounted on the piston shaft. The driving velocity program
to the stepper motor is closely approximated by a sinusoidal curve as shown by the
displacement trace shown in figure 2.

The slight discrepancy between the driving signal and the actual motion of the
piston is probably due to the presence of a flexible coupling between the stepper
motor and the lead screw as shown in figure 1. This coupling consists of a strong
helical spring which causes some lag in the motion of the piston and reduces the
effective amplitude of the motion at low frequencies.

3.2. Flow visualization

The effect of the Reynolds number and Strouhal number on the structure of the
ZNMF jet flow field was visualized using fluorescent dye. The flow visualizations
were recorded using a Pulnix CCD camera and a VHS video recorder. The dye used
for these experiments was Kiton Red 620, which fluoresces orange with a wavelength
of 620 nm when illuminated by light with a wavelength of 532 nm. A plane containing
the x, r-coordinates along the axis of the orifice of the flow was illuminated with
a 200 mW continuous laser spread out into a sheet for these flow visualizations.
Individual video frames were captured and digitized to a 256 level grey-scale image.
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(a)

(b)

Figure 3. Digitized flow visualization of fluorescent dye marker for (a) a ZNMF jet, and
(b) the equivalent continuous jet. The imaged domain measures 76D0×39D0. Re0 = 104, St0 = 0.0015.
The light-coloured lines drawn on the images indicate the apparent mean boundary of the dye flow.
The approximate spreading rates are: (a) Sb ≈ 0.13, (b) Sb ≈ 0.1.

An example of the resulting instantaneous images is shown in figure 3. These
flow visualizations compare a ZNMF jet to an equivalent continuous jet based on
momentum flow velocity. To preserve zero-net-mass injection during data acquisition,
the dye was initially injected to displace the fluid in the cavity behind the orifice
plate. The fluid was then left to settle for several minutes before the initiation of the
piston motion. The relative spread of the jets is shown with lines that depict the mean
boundary of the visible dye from a sequence of images. The apparent spreading rate
for figure 3(a) for the ZNMF jet is Sb ≈ 0.13 at Re0 = 104, St0 = 0.0015, compared
to figure 3(b) in which Sb ≈ 0.1 for the equivalent continuous jet.

3.3. Multigrid cross-correlation PIV measurements

For the PIV experiments the flow was seeded with nylon particles that have a
nominal diameter of 28 µm. These tracer particles were illuminated by laser sheets
produced from pulsed laser beams, which were generated by two Nd:YAG lasers that
produce 400 mJ per pulse at a wavelength of 532 nm. These lasers have an intensity
variation that is approximately Gaussian and a pulse duration of 6 ns. The pulse
separation between the two lasers was set to 33 ms for these experiments. The two
laser beams were set at orthogonal states of polarization and the beam paths were
combined using a polarizing beam splitter plate. The combined beams were then
passed through collimating optics which spread the 12 mm diameter beam into a
sheet approximately 2 mm thick and 300 mm wide at the orifice. The laser sheets were
much larger than the imaged region to minimize the effects of intensity variation
across the images.
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The PIV digital image acquisition was performed using a PCO SensiCam digital
camera with a 1024× 1280 pixels2 CCD array. Pairs of single-exposed images were
analysed using multigrid cross-correlation digital particle image velocimetry (MCCD-
PIV) analysis which is described in Soria (1996a, b, 1998) and Soria, Cater & Kostas
(1999). This technique is not limited by either directional ambiguity or an inability
to detect small displacements. The accuracy and uncertainty associated with multi-
grid cross-correlation PIV and holographic PIV (HPIV) measurements have been
investigated and are discussed in Soria (1998) and vonEllenrieder, Kostas & Soria
(2001). The smallest cross-correlation window size used in the MCCDPIV analysis
was 32× 32 pixels2 and the separation between the MCCDPIV measurements was
16 pixels, resulting in vector grid of 61× 61 vectors.

The individual realizations of the MCCDPIV measurements were used to calculate
the mean velocity field. A nonlinear least-squares procedure was used to determine
the Gaussian curve of best fit to the mean streamwise velocity profile ux(r) in order to
estimate the peak velocity of the jet Uc, with better spatial resolution than the velocity
field measurements. The value of the local jet half-width, r1/2, was also determined
from the Gaussian fit, which is expressed as

ux(r) = Uc exp

[
−Cη2

η2
1/2

]
. (3.5)

where C = ln(2) and η1/2 is the half-width of the jet non-dimensionalized by the axial
location.

3.4. Vorticity calculation

The out-of-plane vorticity was calculated from the MCCDPIV velocity field mea-
surements using a local least-squares fit procedure to the velocity field, followed by
analytic differentiation using the relationship ωθ = ∂ux/∂r − ∂ur/∂x.

A thirteen-point, two-dimensional, local fit to the data was used (Soria 1996b). This
calculation is an approximation that introduces additional bias and random error into
the vorticity value. These errors have been investigated and discussed in Fouras &
Soria (1998). The ratio of vorticity bias error to the exact value can be estimated
from the relationship

ωbias

ωexact
= −2

3

(
∆

L

)2

(3.6)

which was derived in Cater (2002) using the technique outlined in Fouras & Soria
(1998). This relationship shows that the bias error is related to the sampling separation
between velocity measurements, where L can be thought as being a characteristic
length scale of the vorticity distribution and ∆ is the distance between adjacent
velocity measurements.

The ratio of random error in the MCCDPIV velocity measurement compared to
ωθ is denoted by λ0 and can be calculated using the following relationship derived in
Cater (2002):

λ0 =

√
1

7

(
L

∆

)
. (3.7)

This relation is specific to the thirteen-point fitting technique used to calculate the
vorticity. For a vorticity distribution with a characteristic length scale of 4D0 the bias
error is estimated as −6.2% and the random error is estimated as ±6% at the 95%
confidence level.
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3.5. Jet momentum

A measure of the relative appropriateness of an apparatus as a simulator for a
free jet issuing into an unbounded domain is whether the velocity measurements
satisfy the mean momentum integral equation. Hussein et al. (1994) give the inviscid
second-order momentum integral equation as

MI = 2π

∫ ∞
0

[
u2
x + u′x

2 − 1
2

(
u′r

2 + u′θ
2
)]
r dr. (3.8)

From the planar PIV measurements it is possible to determine all of the terms on the

right-hand side of equation (3.8) except u′θ
2. However, previous investigations such as

Hussein et al. (1994) and George & Hussein (1991) suggest that a good estimate for

a round jet is u′θ
2 ≈ 0.5u′r

2.
For the ZNMF jet, the value of the mean momentum flow through the orifice can

be calculated using the momentum flow velocity defined in equation (2.3). This gives
the result

M0 =
π

4
D2

0U
2
0 . (3.9)

3.6. Entrainment

A quantity of particular importance in the application of jet flows is the rate of
entrainment of ambient fluid by the jet. For the case of a continuous jet, the mass of
entrained fluid per unit length (i.e. ρε) can be calculated by integrating the continuity
equation

ε = lim
r→∞(−2πrur) =

d

dx

[
2π

∫ ∞
0

uxr dr

]
. (3.10)

Previous experimental studies have indicated a mean value for the integral of ε/D0 =
0.14Uc (Piquet 1999).

To investigate changes in the rate of entrainment, profiles of mean radial velocity
were extracted from the PIV velocity field measurements which were then plotted as
a function of streamwise distance. The mean radial velocity is pre-multiplied by the
radial coordinate to account for the increase in surface area of a cylinder enclosing
the jet and non-dimensionalized with the momentum flow velocity and the orifice
diameter.

An alternative measure of the entrainment is the coefficient proposed by Morton,
Taylor & Turner (1956). Hussein et al. (1994) provide the following expression for the
entrainment coefficient αε, for a self preserving jet:

αε =
I1

2(I2)1/2
, (3.11)

where I1 and I2 are defined by

I1 = 2

∫ ∞
0

(
ux

Uc

)
η dη, (3.12)

I2 = 2

∫ ∞
0

(
ux

Uc

)2

η dη. (3.13)
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Re0 St0 LD ∆/D0 ∆t1/T0 ∆t2/T0 n N

Continuous jet 104 – – 0.95 0.0008 0.88 64 1024
ZNMF jet 104 0.0015 150 0.95 0.0016 0.88 64 1024

Table 1. Far-field jet investigation parameters.

Re0 St0 LD ∆/D0 ∆t1/T0 ∆t2/T0 n N

ZNMF jet 104 0.0015 150 0.45 0.0016 0.20 64 1024
ZNMF jet 103 0.0072 62.5 0.46 0.1316 0.88 64 1024

Table 2. Near-field jet investigation parameters.

4. Experimental parameters
For the purposes of this investigation the flow domain has been divided into two

regions: the far field which extends from an axial distance of 30D0 to the limits of the
apparatus, and the near field which extends from the generator to a distance of 30D0.

A turbulent ZNMF jet with the smallest Reynolds number found in the flow
visualization study was selected for further study, due to the limitations of the
experimental technique. This was compared to a continuous jet at Re0 = 104 and
existing published findings. A transitional jet at Re0 = 103 was also selected for the
near-field study to verify the results presented in Cater, Bertillino & Soria (1999) and
Cater & Soria (2000). The range of Strouhal numbers for these jets was limited by
the stepper motor.

The mean velocity profiles of the ZNMF jets show a self-similar collapse at
approximately x/D0 = 15. However, the far field of the jets was defined from the
axial location at which the Reynolds stresses show self-similar behaviour, which is
further downstream at approximately x/D0 = 25.

4.1. Far-field measurements

The first set of experiments investigated the self-similar behaviour of the flow in the
developed region of the jets. The imaged area was rectangular and measured 80D0

downstream from the orifice and 32D0 in the radial direction for the investigation of
the far field. Table 1 shows the experimental parameters used in the jet far-field study,
where n is the number of images acquired in a sequence and N is the total number
of image pairs recorded. The time between image frames is ∆t1, between image pairs
∆t2 and the period of the oscillations is T0 = 250 ms. The measurement area of each
MCCDPIV velocity vector 1.9D0 × 1.9D0 and the separation between the velocity
vectors is ∆ = 0.95D0 in this region. To ensure that a statistically stationary flow is
achieved, there is a delay of 60 s between the initiation of motion and the beginning
of the measurement recording. This time is limited by the maximum stroke of the
piston during continuous jet generation which is 94 s at Re0 = 104.

4.2. Near-field measurements

To investigate the evolution of turbulent quantities in the flow development region,
a smaller region of interest was selected that was located at the orifice exit and
measured 40D0 downstream of the orifice and 16D0 in the radial direction for the
near-field study. Table 2 shows the parameters used for the investigation of the
near-field velocity measurements. The measurement area of each MCCDPIV velocity
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vector is 0.9D0 × 0.9D0 and the velocity sample separation is ∆/D0 = 0.45 in this
region.

4.3. Phase-average measurements

A signal from the positional encoder was used to trigger the acquisition of pairs
of single-exposed digital images at different points in the oscillation cycle of the
ZNMF jet to obtain phase-locked data. The phase positions were measured from the
rearmost actuator position. These phases are t/T0 = 0, 1.25, 0.250, 0.375, 0.500, 0.625,
0.750 and 0.875. The resultant velocity measurements were averaged at each phase
to produce phase-averaged MCCDPIV measurements. The phase-averaged velocity
fields were then used to calculate out-of-plane vorticity fields ωθ(x, r), which when
examined revealed the formation sequence of the ZNMF jet in the near field with
Re0 = 103. Examples of phase-triggering used for the acquisition of PIV data can be
found in Panchapakesan & Soria (1999) and Cater, von Ellenrleder & Soria (2001).

The acquisition parameters for the jets are the same as those shown in table 2,
except that ∆t2 = T0. To ensure that the flow is developed in the tank, there was a
delay of 30 min before the start of image recording.

5. Results
5.1. Flow visualization

The initial flow visualizations shown in figure 3 revealed that the spreading rate of a
round turbulent ZNMF jet is greater than an equivalent continuous jet throughout
the measured domain. From a small jet at the orifice, a turbulent ZNMF jet flow
spreads rapidly, and in the far field, structures with length scales many times that of
the orifice are present. Also visible are ring-like structures at the boundary of both
jets. There is some evidence of greater entrainment for the ZNMF jet in this figure,
which can be seen as the penetration of (darker) ambient fluid. However, care must
be taken in interpreting dye remnants since the dye used in the experiments diffuses
away from regions of high vorticity and thus there may be no vorticity associated
with regions of relatively high dye concentration. For a highly intermittent flow, it is
likely that the spread of the jet will be over-estimated using dye, since dye will persist
in regions where vorticity has dissipated.

A number of different flow patterns were observed in the dye visualization study:
(a) At low Reynolds numbers and relatively high Strouhal numbers, the flow is

an apparently steady stream of dye flowing from the orifice with little penetration
of ambient fluid as shown in figure 4(a); this is termed a laminar jet. This regime
has not been reported previously in any of the available experimental or numerical
literature.

(b) The term ‘laminar rings’ has been used where the flow field consists of individual
identifiable laminar vortex rings generated at the forcing frequency as shown in
figure 4(b). In this flow successive rings produced at the orifice are influenced by
the path of preceding rings, but they do not coalescence within the observable flow
domain.

(c) As the Reynolds number is increased the rings begin to coalesce within the
observable domain and an erratic, intermittent jet forms as shown in figure 4(c); this
type of transitional flow is termed a ‘transitional jet’.

(d) At the highest Reynolds numbers there is a large range of scales observed in
the flow as shown in figure 4(d ). This is termed a ‘turbulent jet’ and it is very similar
in appearance to a conventional continuous turbulent jet.
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(a) (b)

(c) (d)

Figure 4. Digitized video realizations of ZNMF jet flow patterns: (a) laminar jet Re0 = 3336,
St0 = 0.03, Sb ≈ 0.05; (b) a series of laminar rings, Re0 = 7784, St0 = 0.012, Sb ≈ 0.06;
(c) a transitional jet, Re0 = 11 121, St0 = 0.009, Sb ≈ 0.1; and (d) a turbulent jet, Re0 = 66 991,
St0 = 0.009, Sb ≈ 0.13.

The complete results of the flow visualization study are summarized in the parame-
ter map shown in figure 5. As the source Reynolds number is increased for a constant
Strouhal number an initially laminar jet breaks into individual rings that become
turbulent and eventually coalesce to produce a turbulent jet flow. For a constant
source Reynolds number, increasing the Strouhal number effectively decreases the
spacing between successive rings. At high Strouhal numbers (i.e. St0 > 3× 10−2) a
jet-like pattern always forms, although the nature of the jet is dependent upon the
Reynolds number. At low Strouhal number (large amplitude), further complexities
in the flow structure may arise from secondary rings that form from disturbances in
the shear layer behind the leading vortex ring. In comparison, the typical range of
parameters for micro-fluidic devices or micro-electro-mechanical-systems (MEMS) is
Re0 ≈ 102 and St0 ≈ 100 (Coe et al. 1994).

5.2. Far-field measurements

For a self-similar turbulent continuous jet, the angle of spread and the rate of jet
decay can be determined from dimensional analysis to be approximately independent
of the source Reynolds number in the far field. Piquet (1999) indicates a typical
value for B of between 6 and 7 for most facilities at high Reynolds numbers (> 104).
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Re0 Su B η1/2

Analytical model – 0.167 6.66 0.100
Wygnanski & Fiedler (1969) 105 0.176 6.40 0.086
Hussein et al. (1994) 105 0.172 6.56 0.094
Panchapkesan & Lumley (1993) 104 0.165 6.84 0.096
Present result: continuous jet 104 0.178 6.32 0.092
Present result: ZNMF jet 104 1.213 0.93 0.107

Table 3. Jet far-field properties, x = 60D0.
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Figure 5. Summary of ZNMF jet flow patterns classified from video sequences of dye flow and
plotted as a function of Strouhal number and source Reynolds number. Different symbols represent
different flow patterns: laminar jets (©), laminar rings (�), transitional jets (�) and turbulent
jets (C).

The theoretical value for a top-hat initial velocity distribution in an unbounded flow
is 6.66. A similar Reynolds number independence was expected for the far field of
turbulent ZNMF jets.

The mean properties of the turbulent ZNMF jet and a comparable continuous jet
are shown in table 3 compared to the analytical values for the top-hat profile. The
LDA measurements of Hussein et al. (1994) are also shown since these data satisfy
the equations of motion to second order, and can be regarded as being representative
of real unconfined axisymmetric jets. The data of Panchapkesan & Lumley (1993) are
at a similar Reynolds number to the data in this paper.

The behaviour of the continuous jet at Re0 = 104 is roughly consistent with the
data of Hussein et al. (1994) which adds credibility to the measurement technique. An
increase in the spread for the continuous jet above the data of Wygnanski & Fiedler
(1969) may be accounted for by the Reynolds number difference, as explained in
Panchapkesan & Lumley (1993). However, the decay of the ZNMF jet is seven times
greater than the continuous jet in this facility. These measurements also confirm the
inference from the flow visualization that the spreading rate of the ZNMF jets is
greater.

Figure 6 shows profiles of mean axial velocity for the ZNMF jet and the equivalent
continuous jet at an axial distance of 60D0. The velocity is non-dimensionalized by
U0 and the radial displacement is non-dimensionalized by D0. This figure shows the
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Figure 6. Non-dimensionalized (but non-normalized) profiles of axial velocity ux/U0, at x = 60D0

for jets at Re0 = 104. Continuous jet (©), ZNMF jet, St0 = 0.0015 (�).
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Figure 7. Normalized profiles of axial velocity ux/Uc, at x = 60D0 for jets at
Re0 = 104. Continuous jet (©), ZNMF jet, St0 = 0.0015 (�), Gaussian distribution (· · ·),
Hussein et al. (1994) (– –).

difference in the mean far-field flow. The centreline velocity for the continuous jet
at x = 60D0 is Uc = 0.225 m s−1. For the ZNMF jet the centreline velocity is Uc =
0.069 m s−1. Thus the continuous jet has a centreline velocity that is approximately
4 times greater than the ZNMF jet at x = 60D0. The half-width of the continuous
jet is approximately r1/2 = 5D0, whereas the ZNMF jet has a half-width closer to
r1/2 = 6D0.

Figure 7 shows the same data as figure 6, normalized by the centreline velocity
and the similarity variable. This is the conventional scaling for the radial direction,
as used by Wygnanski & Fiedler (1969) and Hussein et al. (1994). The velocity fit to
the data of Hussein et al. (1994) and the Gaussian profile given by equation (3.5) are
also shown for comparison. The continuous jet distribution has a Gaussian shape,
though the profile is narrower than the experimental curve fit of Hussein et al. (1994).
This result is consistent with a loss in jet momentum. The difference between these
distributions is most noticeable between 0.1 6 η 6 0.2. The ZNMF has a greater
non-dimensional half-width, as shown in table 3, and a consistently higher value of
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Figure 8. Non-dimensionalized evolution of the jet half-width at Re0 = 104. Continuous jet (©),
ZNMF jet, St0 = 0.0015 (�). A line with the theoretical gradient for a top-hat initial velocity profile
is shown (· · ·) as well as the empirical fit from Bremhorst & Hollis (1990) for fully pulsed jets (– · –).

ux/Uc. The value of ux/Uc is positive throughout the measurement domain and thus
it is concluded that the imaged domain was too small to measure the reverse flow
that surrounds the jets.

Figure 8 shows the evolution of the jet half-width as a function of axial distance for
the two jets compared to the theoretical spread of an unbounded jet. The evolution
of r1/2 for both jets increases linearly up to x = 30D0. However, both curves depart
from the expected relationship beyond this location in a different manner. The rate
of increase in half-width of the continuous jet decreases steadily throughout the far
field. Conversely, beyond x = 30D0, the spread of the ZNMF jet increases slightly.
This behaviour is attributed to the geometry of the apparatus, specifically the lateral
confinement. The endwall has progressively more influence on the flow with increasing
axial distance.

An empirical fit to the data of Bremhorst & Hollis (1990) is also displayed, r1/2 =
0.1125x− 0.071. This fit is only valid in the range 10 > x/D0 > 40, but demonstrates
that pulsed jets have an even greater spreading rate than either the ZNMF jet or
the continuous jet. The irregular nature of the curves at large axial distances despite
the relatively large number of samples (> 103), reflects the intermittent nature of
structures at the boundary of both jets.

Figure 9 shows the mean vorticity contours for the continuous jet at Re0 = 104 and
an equivalent ZNMF jet at St0 = 0.0015. The general shape of both distributions is
the same, despite the different mechanisms responsible for the jet formation. The mean
vorticity contours of the continuous jet have a magnitude which is approximately twice
that of the ZNMF jet. The vorticity values in the near-field region are considerably
lower than expected when x < 10D0. These low values can be explained by the
MCCDPIV analysis methodology.

The MCCDPIV measurements in the region around the orifice were unreliable, due
to the high velocity gradients that are present there and the operational limitations
of the digital CCD camera used in these experiments. Therefore, the measurements
in this region are prone to large errors as indicated in Soria (1998). For this reason
the measurements in this region were rejected, which has resulted in the presentation
of incomplete velocity field and thus erroneous vorticity values.
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Figure 9. Mean, non-dimensional vorticity ωθD0/2U0 at contour levels of 5× 10−4, for jets at
Re0 = 104. (a) Continuous jet, (b) ZNMF jet, St0 = 0.0015.

5.3. Near-field measurements

To explain the measured differences in the far-field behaviour for ZNMF jets, a
study was conducted of the near field of the ZNMF jets using PIV. One thousand
and twenty four image pairs were captured and analysed to determine the spatial
dependence of the flow quantities. Profiles of the components of velocity versus axial
distance are shown in figure 10. These quantities are scaled with the local maximum
velocity and the similarity variable.

In figure 10(a), the mean axial component of velocity ux shows an almost immediate
collapse to Gaussian-like profile, which is typical of a round continuous jet as
described in Rajaratnam (1976). In contrast, the mean radial component ur shown in
figure 10(b), exhibits an interesting trend. Although the general shape of the profiles
is consistent with other jet data, the magnitude is initially small. The magnitude of the
radial velocity then increases to a maximum near x = 15D0, before a reduction takes
place, and finally a self-similar collapse develops at 25D0. The radial velocity profiles
have a degree of asymmetry, which suggests a slight mean radial velocity component
for the entire jet.

The most probable cause of this asymmetry in the near-field flow is geometric
asymmetries in the bevelled edge of the orifice plates produced during manufacture.
The riser tube may also be the cause of asymmetries in the mean flow further
downstream, in particular the mean radial velocity. With the riser tube open to the
atmosphere, the necessity of a mean reverse flow around the continuous jet is removed
and so the far field of the continuous jet measurements is most likely to be affected
by the free surface.

Figure 10(c) shows the streamwise profiles of the mean out-of-plane vorticity,
which has been non-dimensionalized using the local centreline velocity and the jet
half-width. Profiles of the mean vorticity also collapse and exhibit a self-similar scaling
at streamwise locations beyond 15D0. The spatial distribution of vorticity is examined
in more detail in § 5.6.

Profiles of the in-plane Reynolds stresses are shown in figure 11. The maxi-
mum magnitude of the fluctuating component of axial velocity u′2x shown in fig-
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Figure 10. Non-dimensionalized streamwise profiles of mean velocity components and vorticity
in the developing region of a ZNMF jet, Re0 = 103, St0 = 0.0072. Uc is the peak jet velocity
determined from a Gaussian fit and axial location. Different symbols represent different axial
locations: x/D0 = 5 (©), 10 (�), 15 (�), 20 (4), 25 (C), 30 (O).

ure 11(a) has the same trend as the maximum magnitude of the radial velocity, with a
local maximum at x = 15D0. The shape of the profiles of the fluctuating component of
the radial velocity u′2r shown in figure 11(b) is almost identical to the axial component,
but has approximately half their magnitude. The turbulent shear stress u′xu′r shown in
figure 11(c) has a similar profile to the vorticity distribution in figure 10(c), but there
is considerably more scatter in the data, which reflects the need for a greater number
of samples to reduce the uncertainty in the higher-order statistics. The self-similar
collapse and distribution of all the profiles shown in figures 10 and 11 for the round
jet is similar to the corresponding measurements for the planar ZNMF jets (Smith &
Glezer 1998).

Profiles of the components of velocity versus radial distance are shown in figure 12
for the two ZNMF jets at x = 30D0. These quantities are scaled with the source
velocity and the orifice diameter. The centreline velocities are Uc = 11.6× 10−3 m s−1

(Re0 = 103) and Uc = 122× 10−3 m s−1 (Re0 = 104). From these values it appears that
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Figure 11. Non-dimensionalized Reynolds stresses in the developing region of a ZNMF jet,
Re0 = 103, St0 = 0.0072. The Reynolds stresses are scaled with the square of the local jet centreline
velocity. Radial position is non-dimensionalized by the axial location. Different symbols represent
different axial locations: x/D0 = 5 (©), 10 (�), 15 (�), 20 (4), 25 (C), 30 (O).
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Figure 12. Non-dimensional profiles of axial velocity ux/U0, at x = 30D0.
Re0 = 103, St0 = 0.0072 (�), Re0 = 104, St0 = 0.0015 (©).
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Figure 13. Normalized profiles of axial velocity ux/Uc, at x = 30D0. Re0 = 103, St0 = 0.0072 (�),
Re0 = 104, St0 = 0.0015 (©), Gaussian distribution (· · ·), Hussein et al. (1994) (– –).
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Figure 14. Non-dimensionalized streamwise profiles of vorticity ωθ , at x = 30D0.
Re0 = 103, St0 = 0.0072 (�), Re0 = 104, St0 = 0.0015 (©).

the mean centreline velocity scales linearly with the Reynolds number as expected.
The Reynolds number difference appears to have little discernible effect on the mean
velocity profile since the shape of both profiles is similar and the half-width of both
jets is approximately r1/2 = 3.9D0 at x = 30D0. Once again, it appears that the
measurement domain is too small to capture the mean reverse flow.

Figure 13 shows the normalized velocity profiles for the data shown in figure 12
at x = 30D0. The ZNMF jet with Re0 = 104 has a slightly higher non-dimensional
centreline velocity, but the half-width of the two jets is nearly identical. The profiles
of both jets exhibit a self-similar collapse. The shape of the profiles confirms that the
spreading rate of the ZNMF jets in this enclosure is approximately 20% greater than
the analytical model and the experimental measurements of Hussein et al. (1994) for
an unbounded continuous jet.

Figure 14 shows streamwise profiles of the mean out-of-plane vorticity, which
has been scaled by the source velocity and the orifice diameter. Profiles of the mean
vorticity also collapse and exhibit a self-similar scaling at streamwise locations beyond
15D0. At x = 30D0 the shape of the profiles is similar, but the jet with Re0 = 104 has
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Figure 15. Fluctuating axial velocity profile u′2x /U2
c , at x = 30D0. Re0 = 103, St0 = 0.0072 (�),

Re0 = 104, St0 = 0.0015 (©), Hussein et al. (1994) (– –).
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Figure 16. Fluctuating radial velocity profile u′2r /U2
c , at x = 30D0. Re0 = 103, St0 = 0.0072 (�),

Re0 = 104, St0 = 0.0015 (©), Hussein et al. (1994) (– –).

a peak value which is 10% higher. However, the estimated error in the peak value
is considerably higher for the lower Reynolds number jet. The spatial distribution of
vorticity is examined in more detail in § 5.6.

Profiles of the in-plane Reynolds stresses, u′2x , u′2r and u′xu′r are shown in figures 15,
16 and 17 respectively. The Reynolds stresses are non-dimensionalized by the square
of the centreline velocity, U2

c = 5.24 × 10−4U2
0 (Re0 = 104) and U2

c = 4.75 × 10−4U2
0

(Re0 = 103). The non-dimensional centreline values for the normal stresses u′x
2

and

u′r
2

are: 0.13 and 0.07 (Re0 = 104), and 0.31 and 0.09 (Re0 = 103) respectively.
The value of the root-mean-square fluctuating axial velocity at the centreline is

u′xRMS = 0.36 for the ZNMF jet at Re0 = 104, which is very similar to the value of
u′xRMS = 0.35 obtained by James et al. (1996) and 50% greater than the value of
u′xRMS = 0.28 found by Wygnanski & Fiedler (1969) and Hussein et al. (1994) in the
far field of a continuous jet. The centreline fluctuating axial velocity when Re0 = 103 is
higher again, with a value of u′xRMS ≈ 0.56. This may be an indication of the presence
of large-scale structures that are convected along the axis of the jet. This suggests



188 J. E. Cater and J. Soria

0.06

0.05

0.03

0 0.05 0.10
è

0.15 0.20 0.25 0.30

0.04

0.02

0.01

ux′ ur′

Uc
2

Figure 17. Non-dimensionalized turbulent Reynolds stresses u′xu′r/U2
c , at x = 30D0. Re0 = 103,

St0 = 0.0072 (�), Re0 = 104, St0 = 0.0015 (©), Hussein et al. (1994) (– –). The experimental data of
Bremhorst & Hollis (1990) at x = 30D0 for fully-pulsed jets are also shown (�). (Reproduced with
permission of the authors.)

that the effect of the oscillations persists further downstream as coherent structures
at lower Reynolds numbers. The fluctuating axial velocity profile shown in figure 15
also exhibits the slight off-axis bulge seen in the continuous jet data of Hussein et al.
(1994) and Panchapkesan & Lumley (1993).

The shape of profiles of the fluctuating component of radial velocity u′2r , shown in
figure 16 is almost identical to the axial component, but has approximately half the
magnitude. This ratio is consistent with previous measurements. The radial symmetry

of the flow requires that the unknown component u′2θ is equal to half the radial stress,

u′2r . This condition is verified for the unbounded jet in Hussein et al. (1994). The

values of u′2r shown in figure 16 are much higher than expected across the jets. This is
attributed to the passage of relatively large-scale rotational motions which are seen
in the flow visualization.

The far-field turbulent shear stress u′xu′r shown in figure 17 has a similar profile
to the near-field distribution in figure 10(c). The Reynolds stress measurements of
Bremhorst & Hollis (1990) for fully pulsed jets at Re0 = 6× 104 are also shown in
figure 17 for comparison. The values of the turbulent shear stress for the ZNMF jets
are higher than the continuous jet and lower than that measured by Bremhorst &
Hollis (1990) for fully pulsed jets.

The scatter is evidence that a greater number of samples is required to reduce
the uncertainty of the second-order statistics. It appears that the number of samples
acquired is large enough to reach an acceptable uncertainty in the time averages of
velocities, but too small to reach a low uncertainty in the second moments of velocity
fluctuations (Tennekes & Lumley 1972), particularly at Re0 = 104. The peak value of
u′xu′r = 0.02 at Re0 = 104 is found to be consistent with the data of Panchapkesan &
Lumley (1993).

5.4. Momentum integrals

The measured values for the components of the second-order momentum integral
are shown in table 4 compared to the analytical values for the top-hat profile. The

different value of u′x
2

for Re0 = 104 is partly due to the experimental technique. As
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Re0 ux
2 u′2x u′2r u′2θ MI/Mj

Hussein et al. (1994) 105 0.87 0.24 0.13 0.15 0.97
Present result: ZNMF jet 104 0.63 0.26 0.14 – 0.79
Present result: ZNMF jet 103 0.83 0.42 0.23 – 1.08

Table 4. Jet momentum integrals.

Re0 I1 I2 αε

Gaussian model – 0.014 0.0072 0.084
Ricou & Spalding (1961) 105 – – 0.080
Hussein et al. (1994) 105 0.014 0.0066 0.081
Present result: continuous jet 104 0.014 0.0063 0.089
Present result: ZNMF jet 104 0.021 0.0092 0.107

Table 5. Jet entrainment coefficient.

explained previously, the ZNMF jet is broader at each section, and the region that
could be imaged with the digital camera does not capture the entire jet flow. The
larger return flow observed for a ZNMF jet also reduces the possible momentum of
the jet. This momentum deficit at Re0 = 104 can also be explained by the components
ignored in equation (3.8), in particular the viscous terms. An alternative, suggested
by Smith & Glezer (1998), was that the discrepancy is due an adverse streamwise
pressure gradient in the vicinity of the orifice. A conventional analysis of the jet flow
assumes that the pressure gradient is negligible; however, there always exists a net
difference in hydrostatic pressure to establish the flow. Unfortunately, PIV does not
permit the measurement of the pressure field. This is the most compelling reason to
study the evolution of the vorticity field.

The main difference in the relative magnitude of the three components at Re0 = 103

is the unusually high proportion of the jet momentum in the axial component of

turbulent kinetic energy u′2. This is not entirely unexpected, since this is the mode of
forcing the flow. Energy is transferred from this component to all others. The radial
component of the ZNMF jet is in close agreement with previously published data
for the continuous jet (Hussein et al. 1994). An estimate of the error associated with
these quantities is presented in § 5.7.

5.5. Entrainment

It is well-established that the entrainment rate of a round turbulent continuous jet
increases approximately linearly in the developing region up to the end of the potential
core at approximately 12D0 (Ricou & Spalding 1961). Beyond this point a steady
value is reached. The measurements of Hussein et al. (1994) indicate a steady value
of ε/D0 = 0.14Uc.

Table 5 shows the values of the streamwise profile integrals and the entrainment
coefficient of Morton et al. (1956). The entrainment coefficient for the continuous jet
is 10% greater than expected. Again, this increase in entrained fluid is consistent with
a loss of momentum, due to the bounded nature of the flow within this facility. For
the ZNMF jet the entrainment coefficient is 20% larger than the value of αε = 0.08
obtained by direct measurement with a porous cylinder in Ricou & Spalding (1961).
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Re0 = 103, St0 = 0.0072 (�), Re0 = 104, St0 = 0.0015 (©).

0.6

0.5

0.3

0
5 10 15 20 25 30

0.4

0.2

0.1

35

x /D0

40

e
D0Uc
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The value of 0.08 was also obtained by Hussein et al. (1994) using LDA and a flying
hot wire.

The mean radial velocity for the ZNMF jet at Re0 = 103 and St = 0.0072 is shown
in figure 18 as a function of axial distance. At axial distances larger than 15D0, the
radial velocity decays with increasing distance. However, close to the orifice plane a
different trend is observed due to the influence of the boundary layer flow at the orifice
plane. The radial velocity at each section also provides the most reliable estimate of
the axial volume flow using the principle of the conservation of mass.

Figure 19 shows the entrainment velocity in the near field of the ZNMF jets
and the continuous jet at Re0 = 104, normalized by the centreline velocity. Reliable
centreline velocity data are unavailable in the region where x < 10D0, due to the
volume-averaged nature of the measurements. The asymptotic values for the ZNMF
jets are ε/D0 = 0.18Uc (Re0 = 104) and ε/D0 = 0.24Uc (Re0 = 103). The continuous
jet maintains the expected value of ε/D0 = 0.14Uc.

Figure 20 shows the evolution of the mean centreline velocity in the near-field
region: it is expected to progress from a value of zero at the orifice exit, to a
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Figure 20. Non-dimensionalized mean centreline velocity as a function of stream-wise distance in
the developing region of a ZNMF jet determined from a Gaussian fit, Re0 = 103, St0 = 0.0072.
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Figure 21. Mean, non-dimensionalized volume flow-rate, Q/Q0. Re0 = 103, St0 = 0.0072 (�),
Re0 = 104, St0 = 0.0015 (©). A parabolic curve fit is shown for comparison, (· · ·).

maximum, and back to zero again far away from the orifice. This streamwise decay of
the mean centreline velocity is expected to begin where the jet becomes fully developed,
at a downstream distance of approximately 25D0 from the orifice. This transition was
expected to be closer to the orifice exit than for the equivalent continuous jet, since
ZNMF jets do not have a potential core of undiminished velocity. For example,
transition to self-similarity was found at 10x/h for rectangular ZNMF jets by Smith
& Glezer (1998). The non-dimensionalized centreline velocity expressed as the ratio
U0/Uc should stretch to infinity for all the ZNMF jets at a coordinate of x = 0, since
the mean value of the velocity across the orifice is zero. However, deviations from
this would indicate a departure from a top-hat profile. Similarly, the curves for the
continuous jets should intercept the axis at an approximate value of U0/Uc = 1 if
the exit profile is close to a top-hat. As expected from the continuity relationship, the
evolution of the centreline velocity mirrors that of the radial velocity.

Figure 21 shows the volume flow rate in the near field of the ZNMF jets. The mean
volume flow rate at the orifice is zero, as required. The data are non-dimensionalized
by Q0 which is calculated using Q0 = π/4D2

0U
2
0 . Also shown for comparison is a
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Figure 22. Phase-averaged, out-of-plane vorticity ωθD0/2U0, for a ZNMF jet in increments of
5× 10−4, these contour levels are the same for each figure. Dashed lines represent negative values.
Re0 = 103, St0 = 0.0072. Acquisitions are at times given in table 3.
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Figure 23. Mean, non-dimensionalized, out-of-plane vorticity ωθD0/2U0, for a ZNMF jet, Re0 = 103,
St0 = 0.0072. The vorticity is non-dimensionalized by the generation parameters: U0, the momentum
flow velocity and D0, the orifice diameter. Displayed contour levels are values of ωθD0/2U0 in
increments of 5× 10−4. Dashed lines represent negative values.

parabolic relationship, Q = C0x
2. The two curves follow this relationship closely in

the near field, though a linear relationship is expected when the flow is fully developed.
This seems feasible beyond x = 20D0.

5.6. Phase-average measurements

Figure 22 shows the phase-averaged, out-of-plane vorticity contours for the near field
of a ZNMF jet. Each phase plot is the ensemble mean of 128 separate realizations.
These data show the change in the near-field behaviour of the jet throughout the
oscillation cycle. As expected the largest value of vorticity occurs at the phase when
the piston is at its most forward position when t = 0.25T0, which is when ∂u′x/∂r is
at a maximum. For a continuous jet the peak values of mean vorticity are expected
where the mean gradient ∂ux/∂r is largest, i.e. close to the lip of the orifice. The
phase-averaged results of the ZNMF jet show that the peak vorticity is located much
further downstream, at approximately x = 25D0.

A further result is that the ‘wall vorticity’ formed from the boundary layer on the
wall behind the jet is of the same sense of rotation throughout the formation cycle.
This is due to a constant radial inflow. During the forward stroke, this radial flow is
entrained into the jet flow and during the piston suction stroke it is drawn into the
cavity. The error in the wall vorticity measurement is also relatively high due to the
small scale of the structures near the wall. Vorticity values are also compromised in
the region near the orifice due to the limited spatial resolution of the measurements.

The ZNMF jet at Re0 = 103 exhibits an interesting flow feature. Visible in every
phase in figure 22 is a single vortex ring at 5D0 from the orifice. This is known
as the ‘stationary ring’: it has a length scale of 4D0 and its existence was noted in
Mallinson et al. (1999) and Cater & Soria (2000). Figure 23 shows the mean vorticity
distribution of the eight phases at Re0 = 103. Also visible is a change in the mean
spreading rate of the jet at 13D0. This change occurs downstream of the stationary
ring and is associated with lower values of non-dimensionalized out-of-plane vorticity
at this cross-section.

5.7. Error estimates

Table 6 shows the calculated error estimates for the mean velocity field εµ, and peak
vorticity measurements of the jets for the 95% confidence level as percentage values.
The length scale of the velocity distribution in the self-similar region is estimated
using η1/2. The velocity scale is the centreline velocity, Uc. The estimate of the random
error in the vorticity is calculated using equation (3.7). The radial component of
velocity is one order of magnitude smaller than the x-component and therefore is
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Re0 x/D0 η1/2/D0 σ/µ ∆/` εµ λω εωrand εωbias

Continuous 104 60 5.52 0.26 0.17 ±1.59 2.60 ±4.13 −1.97
ZNMF jet 104 60 6.42 0.35 0.15 ±2.14 3.02 ±6.46 −1.46
ZNMF jet 104 30 3.90 0.36 0.12 ±2.21 3.89 ±8.60 −0.88
ZNMF jet 103 30 3.78 0.56 0.12 ±3.43 3.70 ±12.70 −0.98

Table 6. Estimated errors.

much more sensitive to the measurement noise associated with PIV analysis. In fact,
the magnitude of Uc at the investigated axial locations is typically 5–7 pixels while
the radial component is of the order of 1 pixel.

6. Discussion
6.1. Jet formation and structure

The primary mechanism for the formation of round ZNMF jets is the creation of
filaments with azimuthal vorticity that are generated by tangential acceleration at the
orifice edge. These filaments then separate from the orifice and the evolution of all
vorticity within the fluid is then determined by

∂ωi

∂t
= −uj ∂ωi

∂xj
+ ωjSij + ν

∂2ωi

∂xj∂xj
. (6.1)

This evolution equation is valid for an incompressible fluid with homogeneous prop-
erties. The right-hand side of equation (6.1) is the summation of three distinct parts.
The first term describes the convective transport of a fluid element with vorticity by
the velocity field. The second part represents the amplification and rotation of the
vorticity vector by the rate-of-strain field, denoted by the symmetric part of the veloc-
ity gradient tensor, Sij . The final part describes the diffusion of vorticity throughout
the fluid by viscosity.

The formation sequence has been examined using the phase-averaged vorticity
measurements. Starting from the upstream position the piston moves forward and
fluid is ejected from the cavity through the orifice. The flow separates at the sharp
edges of the orifice, forming a vortex ring which begins to move away under its self-
induced velocity. At low Reynolds numbers (Re0 < 103) and low Strouhal numbers
(St0 < 3× 10−2) the vortex ring has travelled sufficiently far away that it is almost
unaffected by the fluid that is drawn into the cavity. As the Reynolds number is
increased, for a constant Strouhal number, the rings move closer together until each
loses its identity.

The ZNMF jet forms when vorticity is advected from the generator faster than it
is diffused by viscosity. The results of James et al. (1996) suggest that a mechanism
is required to remove vorticity close to the generator so that the forward and reverse
motion of the oscillating boundary results in a flow field that is asymmetric in time.
In the case investigated by James et al. (1996) the mechanism was identified as being
the formation of cavitation bubbles at the surface of the membrane, which displaces
fluid elements with vorticity. It was shown that a jet did not form when the cavitation
bubbles were not present. It is our conjecture that if the membrane is mounted flush,
there will be equal and opposite amounts of circulation at the membrane during
each cycle. Without the convection of vorticity away from the orifice it is likely that
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cross-annihilation and diffusion will prevent the formation of a jet. Flow visualization
in the facility used for the present investigation using a membrane stretched across
the orifice suggests that this is the case. In the present study, the orifice provides a
sharp edge to facilitate the generation of concentrated vorticity and flow separation
during the forward stroke of the piston.

George (1989) has shown that the scaling constants Su and Sb are not universal
and hence the far field can remain forever dependent on the source conditions. This
has been numerically verified in the study of Boersma, Brethouwer & Nieuwstadt
(1998). In a particular apparatus the far-field behaviour is determined primarily by
the velocity profile and the boundary conditions. Thus, the geometry of the cylinder
cavity behind the orifice will also have some effect on the bulk flow due to its influence
on the exit velocity profile at the orifice. From a modelling point of view, different
velocity profiles can be used to reflect different effective formation geometries.

The data reported in this paper show the mean behaviour of the jets, with a number
of different time scales evident in the flow. However, a number of additional time
scales need to be considered for the ZNMF jet. At Re0 = 103, St0 = 0.0072, the
time scale associated with the vortex ring formation at the orifice and the time scale
associated with the rotation of the primary ring may be important. From the PIV
measurements, it is found that the circulation of the primary ring is approximately
0.878T−1

0 . This result can be used to approximate the mean rotation period of the
primary ring, which is found to be 28T0. This is much slower than the oscillation
period of the piston. Flow visualizations of the near field suggest that the recirculation
time in the tank for fluid elements that start at the orifice is larger than 103T0.

Since the cavity is finite for a ZNMF jet, other time scales may be introduced into
the flow from the recirculation of vortical structures within. In the same manner that
the jet is formed, vortices will be generated in the cavity at the inner surface of the
orifice on the suction stroke of the piston. Some degree of annihilation is expected
between these vortices and the vortex rings with opposite sense produced at the piston
face. Therefore, their formation cycle may change the orifice velocity profile. However,
once the flow is established, the time scales are likely to be harmonics of the forcing
frequency.

The asymmetry of the velocity profile during the forward and reverse stroke is
evident in the numerically simulated cavity flows of Rizzetta, Visbal & Stanek (1998).
A more precise comparison of ZNMF and continuous jets would be to match the
initial velocity profile of the jets, but this has proved to be experimentally difficult to
achieve, with the recent exception of the study by Mi, Nobes & Nathan (2001).

Wygnanski & Fiedler (1969) also obtained a different spreading rate and rate of
decay in the jet far field at distances greater than x = 50D0. Hussein et al. (1994)
have attributed this difference to the loss of jet momentum due to the confinement of
the jet by the boundaries of the experimental facility. It is the rapid spreading of the
ZNMF jets, along with the reverse flow due to the confined nature of the experiments,
that make the dimensions of the apparatus worthy of further investigation.

The lateral confinement and longitudinal confinement have opposing effects to some
degree. The presence of the sidewalls of the tank narrows the streamwise velocity
distribution and reduces the spread of a jet. The endwall of the tank flattens the
velocity distribution and is responsible for the reverse flow surrounding a continuous
jet. For a fully confined jet, the conservation of mass in each plane becomes the
limiting factor. The behaviour of a round confined jet has been studied in Risso &
Fabre (1997).

For the continuous jet at x = 60D0 the momentum ratio given by equation (3.4) is
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M/M0 = 0.994. In other words, it is estimated that 99.4% of the source momentum is
preserved in the jet flow. For the ZNMF jet at the same axial location the momentum
ratio is equal to 0.789; since B is smaller for the ZNMF jet we can expect that it is
influenced more by the reverse flow. This is a by-product of the reverse stroke.

The assumption that the jet cross-sectional area is small compared to the tank may
not be appropriate in these experiments. If we assume that the cross-sectional area of
the jet flow is equal to three times the half-width as suggested by Bremhorst & Hollis
(1990), then the area of the jet flow is equal to half the cross-sectional area of the
tank at an axial position of 250D0. For this reason, no data were collected beyond
100D0.

6.2. Stationary vortex ring

A conceptual model of the structure of the ZNMF jet near field at Re0 = 103 has
been developed based on the phase-averaged vorticity measurements. Close to the
orifice, fluid is radially entrained throughout the oscillation cycle of the ZNMF jet
generator. On the forward piston stroke this fluid is convected along with the jet flow.
On the reverse stroke this fluid is drawn into the cylinder cavity. This radial flow
gives rise to the boundary layer on the wall behind the jet, and thus the vorticity
layer along the wall, which is similar to an annular jet.

The radial flow at the wall boundary layer is also partly responsible for the existence
of the stationary ring, located 5D0 from the orifice. On each forward stroke the jet
flow is drawn through the centre of the stationary ring and is accelerated, before
expanding. Mallinson et al. (1999) postulated that the stationary vortex ring behaves
as a venturi nozzle that accelerates and contracts the jet initially, then decelerates
and diffuses the flow. After passing through the stationary ring the mean jet flow
spreads more rapidly than a continuous jet. It is expected that the maximum velocity
in the flow domain occurs at the centre of the stationary ring during the forward
piston stroke, though in the mean the peak velocity is further downstream at an axial
distance of approximately 26D0. After passing through the ring the jet flow entrains
more fluid, then spreads and decays and finally the flow approaches a self-similar
state. The presence of the stationary ring may be specific only to low Reynolds
number ZNMF jets, when viscous effects are more significant.

Previous measurements with piezoelectric devices have been at higher Strouhal
numbers and have not shown the presence of the stationary vortex ring. It may be
that at higher Strouhal numbers the stationary ring is convected along the jet axis as
seen in the low Reynolds number simulations. Thomas & Goldschmidt (1986) have
found that acoustic excitations at St0 < 1 significantly influence the spreading rate of
continuous jets. Large increases were found for St0 = 0.29, 0.42 and 0.48 with Sb up
to 0.15.

This stationary ring has also been observed in the numerical simulations of Rizzetta
et al. (1998) and Mallinson et al. (1999) and in the experimental study of Cater &
Soria (2000). The stationary ring has a length scale of approximately 4D0 and a
centre location that appears to oscillate between four and six orifice diameters from
the orifice. This phenomenon is not evident in the vorticity field of an equivalent
continuous jet.

6.3. Jet entrainment and mixing

In figure 18 the profile of radial velocity has an unexpected shape. The magnitude
of the radial velocity increases from zero at the orifice up to a local maximum at
2D0. There is a minimum at 5D0, followed by the maximum at 15D0. The local
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Figure 24. Schematic of the parameters that characterize a round ZNMF jet flow. Um is the
maximum centreline velocity of the flow. Flow is from left to right.

minimum has a streamwise position that corresponds to the location of the mean
primary ring which is between 5D0 and 6D0. This result provides further evidence of
the presence and location of the primary ring. When scaled by the similarity variable,
measurements at radial locations greater than 25D0 collapse onto this curve. The
resulting curve progresses from a value of zero near the wall to a peak radial velocity
located between 15D0 and 20D0 and then exhibits a monotonic decay, presumably
until there is interference due to the extent of the jet. A self-similar behaviour of
the velocity and vorticity profiles is evident immediately downstream of this position,
which corresponds to the established self-preserving behaviour observed in other
continuous jet measurements. It is at this axial location that the non-dimensionalized
Reynolds stresses are also at a maximum, which suggests increased mixing in this
region. A schematic of the ZNMF jet flow is shown in figure 24.

It is evident from the jet half-width data shown in table 3, that transitional and
turbulent ZNMF jets have a greater spread than the comparable continuous jets. This
result was not initially expected since the source Reynolds numbers of the jets are
similar and other published measurements contradict the present result. The central
question posed by these experimental data is the nature of the mechanism responsible
for the difference in the spreading behaviour.

Standard models for the formation of a vortex, such as that proposed by Gharib,
Rambod & Shariff (1998), show that the starting vortex detaches from the orifice
when the non-dimensional stroke length at the orifice is greater than about 4D0. In
the present work, the non-dimensional slug length is � 30. With such a long slug
at the orifice the flow field is more akin to a series of accelerating and decelerating
jets. A study of the entrainment rate of a decelerating and an accelerating jet has
been performed by Johari & Paduano (1997) and Zhang & Johari (1996) respectively.
The approach of Johari & Paduano (1997) was to change the entrainment rate by
varying the momentum of the jet. This is in contrast to the approach of Smith &
Glezer (1997) who attempted to directly manipulate the shear layer using small-scale
actuators. Johari & Paduano (1997) show that the deceleration phase of an unsteady
jet entrains more fluid than the equivalent steady jet. Conversely, Zhang & Johari
(1996) showed reduced entrainment for accelerating jets.

This behaviour is due to the relative momentum of fluid elements at each sec-
tion. During the acceleration period of the jet, fluid elements upstream have more
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momentum and therefore the entrainment required by continuity is less. During the
deceleration, fluid elements upstream have less momentum and therefore the radial
entrainment is greater. Since the mean ZNMF jet flow decelerates with axial coordi-
nate more rapidly than the continuous jet, the total radial entrainment over a period
is greater.

Liepmann & Gharib (1992) have demonstrated how streamwise vortex pairs form
between the predominant vortex rings of the continuous jet. They further highlighted
the importance of these streamwise vortex pairs in the entrainment process of ambient
fluid. These structures have also been observed in the wake of turbulent separated
vortex rings and therefore the presence of streamwise vortices in the wake of each
pulse may also act to increase the mixing of the ZNMF jets at low Strouhal numbers.

In summary, the reason that ZNMF jets spread differently throughout the domain
is due to structural differences in the near field. Although, the shape of the mean
velocity profiles is similar to a continuous jet in the far field, the mean streamwise
gradients are different. This important difference persists and propagates through the
nonlinear terms in the equations of motion, specifically through the term ux∂ux/∂x. In
other words, it is possible that at some point in the flow an ‘equivalent’ continuous jet
and a ZNMF jet have the same momentum and velocity profile, but the streamwise
velocity gradients are different due to the increased radial inflow in the near field.
This leads to the non-universality of constants in similarity solutions for turbulent jets
across different velocity profiles, as well as the source Strouhal number dependence
of the jet statistics. In the ZNMF jets, the velocity gradients are also a function of
the actuator phase as shown in the phase-averaged vorticity profiles.

7. Conclusions
This study demonstrates that the round turbulent ZNMF jet has a similar cross-

stream velocity distribution to that of a conventional continuous jet but with a larger
spreading rate and decay constant. A stationary primary ring has been identified
in the near field of the ZNMF jet that remains throughout the ZNMF jet cycle
at Re0 = 103, St0 = 0.007. This structure has a length scale which is approximately
four times the jet orifice diameter. It is suggested that this large-scale structure is
responsible for a peak in the jet radial entrainment at a position approximately fifteen
diameters downstream of the orifice. Structural differences in the near field of ZNMF
jets compared to continuous jets are responsible for different streamwise velocity
gradients and, hence, the different spreading and different velocity decay behaviour
that is observed.

The financial support of the ARC to undertake this research is gratefully acknowl-
edged.
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